СПЕКТР: СПЕКТРАЛЬНЫЕ ОБЛАСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

СПЕКТР: СПЕКТРАЛЬНЫЕ ОБЛАСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯК статье СПЕКТРВ соответствии с длинами волн (?) весь спектр электромагнитного излучения условно делится на ряд частично перекрывающихся областей - от радиоволн на его длинноволновой границе до гамма-лучей на границе коротких волн. Однако такое деление отражает зависимость не только от ?, но и от способов генерации и обнаружения соответствующего электромагнитного излучения. Например, нет никакого принципиального различия между микроволновым и инфракрасным излучением одинаковых длин волн, но если излучение генерируется электронным прибором, его называют микроволновым, а если оно испускается инфракрасным источником - инфракрасным.Радиоволны. Электромагнитное излучение с длинами волн примерно от 1 см до 30 000 м составляет радиоволновую часть спектра. Поскольку скорость любого электромагнитного излучения в вакууме составляет 300 000 000 м/с и равна произведению длины волны на частоту (c = ??), то радиоволновому интервалу соответствуют частоты примерно от 10 000 герц (Гц, 1Гц = 1 с-1) до 30 000 мегагерц (МГц, 1МГц = 106 Гц). Излучение таких частот получают с помощью ламповых или полупроводниковых генераторов, а для регистрации применяют резонансные радиосхемы.Радиоволны используются в основном в системах связи и навигации. В 1932 было открыто радиоволновое излучение нашей Галактики, что в значительной мере стимулировало рождение новой науки - радиоастрономии. Крупного успеха радиоастрономия добилась в 1951, когда были обнаружены радиоволны, испускаемые облаками межзвездного водорода на единственной частоте, отвечающей длине волны около 21 см. В лабораториях радиоспектроскопия широко применяется для исследования атомов и молекул. См. также РАДИОАСТРОНОМИЯ.Микроволновое излучение. Излучение с длинами волн примерно от 0,5 мм до 30 см (частотный интервал от 600 000 до 1000 МГц) относится к микроволновому диапазону спектра. Для генерации микроволнового излучения применяются специальные электронные лампы (клистроны). Бурное развитие микроволновая техника получила в период Второй мировой войны в связи с резко возросшими требованиями к эффективности средств связи и радиолокации. Микроволновое излучение естественных источников обусловлено главным образом вращением молекул, хотя известны и СВЧ-спектры атомов. Исследование микроволновых вращательных спектров молекул является одни из самых точных методов определения структуры молекул газа.Инфракрасное излучение. Инфракрасное (ИК) излучение было открыто английским астрономом В.Гершелем в 1800. Пользуясь простым термометром, он установил, что тепловое излучение имеет наибольшую интенсивность за пределами видимой области вблизи его красной границы. Инфракрасная область спектра начинается примерно от 0,8 мкм и простирается примерно до 1 мм. Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней ИК-области (до 1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением.ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте.Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов.Видимая область. Видимой области соответствует диапазон длин волн от 400 нм (фиолетовая граница) до 760 нм (красная граница), что составляет ничтожную часть полного электромагнитного спектра. Источниками видимого света в лаборатории обычно служат раскаленные твердые тела, электрический разряд и лазеры (обычно лазеры на красителях). Перестраиваемые лазеры на красителях позволяют перекрывать большие участки видимого спектра (например, краситель родамин 6G излучает в интервале 570-660 нм). Наиболее распространенными детекторами видимого излучения являются глаз человека, фотопластинки, фотоэлементы, фотоумножители. Видимые спектры связаны с квантовыми переходами внешних электронов атомов и молекул и содержат важнейшую информацию об их электронной структуре.Ультрафиолетовое излучение. Ультрафиолетовая (УФ) спектральная область была открыта в 1801, когда И.Риттер и У.Волластон, наблюдая солнечный спектр, обнаружили, что наибольшее почернение хлорида серебра вызывается излучением, более коротковолновым, нежели фиолетовое. К УФ-области относится излучение с длинами волн от 10 до 400 нм. УФ-излучение с длинами волн короче 185 нм поглощается воздухом, поэтому приборы для этого диапазона должны быть вакуумными. Поскольку лишь немногие из обычно прозрачных веществ остаются прозрачными для "вакуумного ультрафиолета", в таких приборах применяется отражательная оптика. Для регистрации ультрафиолетового излучения используются специальные фотопластинки и фотоэлектрические детекторы. Большинство УФ-спектров связано с квантовыми переходами внешних электронов атомов и молекул, поэтому УФ-спектроскопия применяется для исследования строения атомов.Рентгеновское излучение. В 1895 было сделано одно из самых важных открытий физики: В.Рентген, изучая электрические разряды в газах, заметил, что бумажный экран, подвергнутый специальной обработке, начинает светиться, если его поднести к работающей газоразрядной трубке, и сделал вывод, что свечение возникает под действием нового, неизвестного проникающего излучения, названного им X-лучами. Из дальнейших экспериментов выяснилось, что X-лучи - это электромагнитное излучение, длинноволновая граница которого перекрывается с вакуумным ультрафиолетом, а коротковолновая составляет малую долю нанометра.Рентгеновское излучение с непрерывным спектром часто называют тормозным излучением, поскольку оно возникает при замедлении электронов, бомбардирующих анод рентгеновской трубки. См. также РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ.Гамма-излучение. Гамма-излучение отличается от рентгеновского меньшей длиной волны (0,1-10-6нм) и своим происхождением. Ядро, получив в результате ядерной реакции избыточную энергию, может оказаться в возбужденном состоянии. Возвращаясь в состояние с более низкой энергией, оно отдает избыточную энергию, испуская гамма-квант. Изучение спектров гамма-излучения позволяет получить важную информацию о строении ядер и ядерных взаимодействиях, подобно тому, как оптические спектры помогают понять строение атомов и молекул и действующие в них силы.

Смотреть больше слов в «Энциклопедии Кольера»

СПЕКТРОСКОПИЯ →← СПЕКТР

T: 225